成人污污污WWW网站免费,亚洲日韩精品无码专区网站,四川少扫搡BBW搡BBBB,日韩aⅴ无码免费播放

冠杰訂購(gòu)熱線:

0755-27839151
當(dāng)前位置首頁(yè) » 行業(yè)資訊 » 冠杰新聞 » FOX輕型石英晶體

FOX輕型石英晶體

返回列表 來(lái)源:冠杰電子 瀏覽:- 發(fā)布日期:2023-09-01 11:42:39【

FOX輕型石英晶體,美國(guó)??怂构緫{借著精湛工藝打磨出高質(zhì)量的石英晶振,并因此一舉成名,成為當(dāng)下最受歡迎的元器件制造商之一,隨著行業(yè)的快速發(fā)展,??怂构静粩鄡?yōu)化與迭代自身的產(chǎn)品,因而在市場(chǎng)上獲得更多的機(jī)會(huì),為了更好滿足用戶的需求,對(duì)于產(chǎn)品極致的追求,使得FOX公司不斷突破自我,走向新的創(chuàng)新之路,也成就更加偉大的??怂?。

石英晶體的“老化”導(dǎo)致頻率隨時(shí)間變化,可能必須采取這種影響由客戶在設(shè)計(jì)電路時(shí)考慮取決于需要實(shí)現(xiàn)。石英老化的主要原因有兩個(gè)晶體,一個(gè)是由于傳質(zhì),另一個(gè)是因?yàn)閺?qiáng)調(diào).

質(zhì)量轉(zhuǎn)移

設(shè)備封裝內(nèi)的任何不希望的污染都可能將物質(zhì)轉(zhuǎn)移到晶體中或從晶體中轉(zhuǎn)移出來(lái),導(dǎo)致將改變頻率的石英坯的質(zhì)量設(shè)備的。例如,用于安裝石英坯件會(huì)產(chǎn)生“排氣” 會(huì)在惰性氣體中產(chǎn)生氧化物質(zhì)密封的水晶包裝里的空氣生產(chǎn)過(guò)程必須得到很好的控制。理想情況下制造方法盡可能干凈,以消除任何效果并給出良好的老化結(jié)果。

強(qiáng)調(diào)
這可能發(fā)生在晶體的各個(gè)組件中從石英坯料的加工環(huán)氧樹(shù)脂安裝粘合劑,晶體安裝結(jié)構(gòu)以及器件中使用的金屬電極材料的類型。加熱和冷卻也會(huì)由于不同膨脹系數(shù)。系統(tǒng)中的應(yīng)力通常隨著系統(tǒng)放松而隨時(shí)間變化,這可能導(dǎo)致頻率的變化。
實(shí)踐中的老齡化
當(dāng)觀察晶體的示例老化測(cè)試結(jié)果時(shí),可以看出,頻率的變化通常是在第一年最偉大,并隨著時(shí)間的推移而衰退。它必須然而,請(qǐng)注意,例如,如果指定了設(shè)備每年最大±5ppm;這并不意味著衰老5年后為±5ppm×5年,即±25ppm。在實(shí)踐中,示例的±5ppm老化裝置可能僅為±1ppm至運(yùn)行第一年±2ppm,然后減少隨后幾年。對(duì)于10年內(nèi)最大±10ppm的石英晶體諧振器老化,通常使用通用“指南”盡管在現(xiàn)實(shí)中它通常比這個(gè)要少得多。是的甚至無(wú)法預(yù)測(cè)設(shè)備的確切老化在同一時(shí)間由同一批石英將表現(xiàn)出略微不同的老化特性。
生產(chǎn)過(guò)程必須從零件到部分,來(lái)自石英坯料的制造,電極尺寸及其位置,用于安裝石英及其固化熱剖面,都有輕微影響在頻率上。設(shè)備可能老化為負(fù)或正取決于內(nèi)部原因一個(gè)批次往往遵循類似的結(jié)果。一般來(lái)說(shuō)在90%以上的制造零件中,老化效應(yīng)是負(fù)面的。

原廠編碼 廠家 型號(hào) 頻率 頻率穩(wěn)定度
FOXSLF/250F-20 ??怂咕д? HC49SLF 25MHz ±50ppm
FOXSLF/147-20 ??怂咕д? HC49SLF 14.7456MHz ±50ppm
FOXSLF/073-20 福克斯晶振 HC49SLF 7.3728MHz ±50ppm
FOXSLF/160-20 ??怂咕д? HC49SLF 16MHz ±50ppm
FOXSLF/160 ??怂咕д? HC49SLF 16MHz ±50ppm
FOXSLF/080 ??怂咕д? HC49SLF 8MHz ±50ppm
FOXSLF/128-20 ??怂咕д? HC49SLF 12.288MHz ±50ppm
FOXSLF/245F-20 ??怂咕д? HC49SLF 24.576MHz ±50ppm
FOXSLF/040A ??怂咕д? HC49SLF 4MHz ±50ppm
FOXSLF/120 ??怂咕д? HC49SLF 12MHz ±50ppm
FOXSLF/0368-20 福克斯晶振 HC49SLF 3.6864MHz ±50ppm
FOXSLF/240F-20 ??怂咕д? HC49SLF 24MHz ±50ppm
FOXLF250F-20 ??怂咕д? HC49ULF 25MHz ±50ppm
FOXLF120-20 ??怂咕д? HC49ULF 12MHz ±50ppm
FOXLF160 ??怂咕д? HC49ULF 16MHz ±50ppm
FOXLF160-20 ??怂咕д? HC49ULF 16MHz ±50ppm
FOXLF040A ??怂咕д? HC49ULF 4MHz ±50ppm
FOXLF0368-20 ??怂咕д? HC49ULF 3.6864MHz ±50ppm
FOXSLF/143-20 福克斯晶振 HC49SLF 14.31818MHz ±50ppm
FOXSDLF/143-20 ??怂咕д? HC49SDLF 14.31818MHz ±50ppm
FOXSDLF/245F-20 福克斯晶振 HC49SDLF 24.576MHz ±50ppm
FOXSDLF/041 ??怂咕д? HC49SDLF 4.194304MHz ±50ppm
FOXSDLF/100-20 ??怂咕д? HC49SDLF 10MHz ±50ppm
FOXSDLF/160R-20/TR ??怂咕д? HC49SDLF 16MHz ±50ppm
FOXSDLF/200R-20/TR 福克斯晶振 HC49SDLF 20MHz ±50ppm
FOXSDLF/245FR-20/TR ??怂咕д? HC49SDLF 24.576MHz ±50ppm
FQ5032B-24.576 福克斯晶振 C5BQ 24.576MHz ±30ppm
FQ5032B-24.000 ??怂咕д? C5BQ 24MHz ±30ppm
FQ5032B-16.000 福克斯晶振 C5BQ 16MHz ±30ppm
FQ5032BR-25.000 ??怂咕д? C5BQ 25MHz ±50ppm
FQ5032BR-12.000 ??怂咕д? C5BQ 12MHz ±50ppm
FQ5032BR-20.000 ??怂咕д? C5BQ 20MHz ±50ppm
FQ5032BR-24.000 ??怂咕д? C5BQ 24MHz ±50ppm
FQ7050B-10.000 福克斯晶振 C7BQ 10MHz ±30ppm
FQ7050BR-8.000 ??怂咕д? C7BQ 8MHz ±50ppm
FQ7050BR-6.000 ??怂咕д? C7BQ 6MHz ±50ppm
FQ3225B-16.000 ??怂咕д?/span> FQ3225B 16MHz ±50ppm
FQ3225B-27.000 福克斯晶振 FQ3225B 27MHz ±50ppm
FQ3225BR-25.000 ??怂咕д? FQ3225B 25MHz ±50ppm
FQ3225BR-24.000 ??怂咕д? FQ3225B 24MHz ±50ppm
FQ3225BR-12.000 福克斯晶振 FQ3225B 12MHz ±50ppm
FQ1045AR-6.000 ??怂咕д? FQ1045A 6MHz ±30ppm
FQ1045AR-4.000 ??怂咕д? FQ1045A 4MHz ±30ppm
FQ1045AR-3.6864 ??怂咕д? FQ1045A 3.6864MHz ±30ppm
FOXSLF/0368S 福克斯晶振 HC49SLF 3.6864MHz ±50ppm
FOXLF120 ??怂咕д? HC49ULF 12MHz ±50ppm
FOXSDLF/128-20 福克斯晶振 HC49SDLF 12.288MHz ±50ppm
FOXSDLF/081-20 ??怂咕д? HC49SDLF 8.192MHz ±50ppm
FOXSDLF/098-20 福克斯晶振 HC49SDLF 9.8304MHz ±50ppm
FOXSDLF/196-20 ??怂咕д? HC49SDLF 19.6608MHz ±50ppm
FOXSLF/115 ??怂咕д? HC49SLF 11.0592MHz ±50ppm
FOXSLF/200 ??怂咕д? HC49SLF 20MHz ±50ppm
FOXSDLF/0368R-20/TR ??怂咕д? HC49SDLF 3.6864MHz ±50ppm
FOXSDLF/040R/TR ??怂咕д? HC49SDLF 4MHz ±50ppm
FOXSDLF/060R-20/TR ??怂咕д? HC49SDLF 6MHz ±50ppm
FOXSDLF/073R-20/TR ??怂咕д? HC49SDLF 7.3728MHz ±50ppm
FOXSDLF/100R-20/TR ??怂咕д? HC49SDLF 10MHz ±50ppm
FOXSDLF/115R-20/TR ??怂咕д? HC49SDLF 11.0592MHz ±50ppm
FOXSDLF/143R-20/TR 福克斯晶振 HC49SDLF 14.31818MHz ±50ppm
FOXSDLF/240FR-20/TR ??怂咕д? HC49SDLF 24MHz ±50ppm
FOXSDLF250F-20 福克斯晶振 HC49SDLF 25MHz ±50ppm
FX252BS-20.000 ??怂咕д? FX252B 20MHz ±50ppm
FQ5032BR-10.000 ??怂咕д? C5BQ 10MHz ±30ppm
FQ5032BR-16.000 福克斯晶振 C5BQ 16MHz ±50ppm
FX532B-10.000 ??怂咕д? FX532B 10MHz ±50ppm
FQ7050B-11.0592 福克斯晶振 C7BQ 11.0592MHz ±30ppm
FX425B-16.000 ??怂咕д? FX425B 16MHz ±50ppm
FQ5032B-19.6608 福克斯晶振 C5BQ 19.6608MHz ±30ppm
FQ5032B-14.7456 ??怂咕д? C5BQ 14.7456MHz ±30ppm
FQ5032B-10.000 ??怂咕д? C5BQ 10MHz ±30ppm
加速老化

使用加速老化是行業(yè)的常見(jiàn)做法預(yù)測(cè)長(zhǎng)期頻率移動(dòng)的過(guò)程高溫浸泡裝置和測(cè)量以相關(guān)間隔進(jìn)行頻率移動(dòng)。這是正常的使用無(wú)源測(cè)試(即無(wú)電源)測(cè)試SMD晶振晶體。使用的一般規(guī)則是將晶體在+85°C下浸泡30天相當(dāng)于在普通房間老化1年溫度如果此測(cè)試延長(zhǎng)了足夠的時(shí)間,則記錄的數(shù)據(jù)可以用圖形繪制,以便通過(guò)外推,對(duì)未來(lái)長(zhǎng)期老化的預(yù)測(cè)。
頻率調(diào)整
請(qǐng)注意,石英的老化有效地改變了晶體的頻率公差,而不是直接影響石英在溫度下的穩(wěn)定性任何很大的程度,因?yàn)樵搮?shù)由所用石英的“切割角度”決定。如果使用石英振蕩器具有諸如VCXO、TCXO或OCXO,輸出頻率可以調(diào)整回其標(biāo)稱指定值。
設(shè)計(jì)

工程師使用晶體或振蕩器通常會(huì)知道整體穩(wěn)定性的數(shù)值他們的設(shè)備必須在特定的時(shí)間段內(nèi)滿足要求。當(dāng)裝置的公差和/或穩(wěn)定性降低時(shí)衰老變得越重要。例如使用溫度穩(wěn)定性為±1ppm的TCXO需要將老化保持在相對(duì)較小的值。但是,如果設(shè)計(jì)的總頻率移動(dòng)裕量是示例±200ppm和額定值為±100ppm的設(shè)備則可以有效地進(jìn)行少量老化已忽略。FOX輕型石英晶體.

The ‘ageing’ of a quartz crystal results in a small change of frequency over time and this effect may have to be taken into account by the customer when designing their circuit depending upon the overall specification that needs to be achieved. There are two main causes of ageing in quartz crystals, one due to mass-transfer and the other due to stress.

Mass-Transfer 

Any unwanted contamination inside the device package can transfer material to or from the crystal causing a change in the mass of the quartz blank which will alter the frequency of the device. For example, the conductive epoxy used to mount the quartz blank can produce ‘out-gassing’ which can create oxidising material within the otherwise inert atmosphere inside the sealed crystal package and so this production process must be well controlled. Ideally the manufacturing method is as clean as possible to negate any effects and give good ageing results.

Stress

This can occur within various components of the crystal from the processing of the quartz blank, the curing of the epoxy mounting adhesive, the crystal mounting structure and the type of metal electrode material used in the device. Heating and cooling also causes stress due to different expansion coefficients. Stress in the system usually changes over time as the system relaxes and this can cause a change in frequency.

Ageing in practice

 When looking at example ageing test results of crystals, it can be seen that the change in frequency is generally greatest in the 1st year and decays away with time. It must be noted however that for example if a device is specified at ±5ppm max per year; it does not follow that the ageing after 5 yrs will be ±5ppm x 5yrs, i.e. ±25ppm. In practice, the example ±5ppm ageing device may be only ±1ppm to ±2ppm in the 1st year of operation and then reduces over subsequent years. It is common to use a general ‘guiderule’ for crystal ageing of ±10ppm max over 10 years although in reality it is usually much less than this. It is impossible to predict the exact ageing of a device as even parts made at the same time and from the same batch of quartz will exhibit slightly different ageing characteristics. The production process must be consistent from part to part, from the manufacture of the quartz blank, the electrode size and its placement, to the epoxy used to mount the quartz and its curing thermal profile, all have a slight affect on frequency. Devices can age negatively or positively depending upon the internal causes although parts from one batch tend to follow similar results. Generally the ageing effect is negative in over 90% of parts manufactured

Accelerated ageing 

It is common industry practice to use an accelerated ageing process to predict long term frequency movement by soaking devices at elevated temperatures and measuring frequency movement at relevant intervals. It is normal to test crystals using a passive test (i.e. non-powered). The general rule used is that soaking a crystal at +85°C for 30 days is equivalent to 1 year of ageing at normal room temperature. If this test is extended for enough time then the recorded data can be plotted graphically to enable via extrapolation, the prediction of future long term ageing.

Frequency adjustment 

Note that the ageing of quartz effectively changes the frequency tolerance of the crystal and does not directly influence the stability of the quartz over temperature to any great degree as this parameter is dictated by the ‘cutangle’ of the quartz used. If using quartz oscillators that have a voltage-control function such as VCXOs, TCXOs or OCXOs, the output frequency can be adjusted back to its nominally specified value.

Design 

The engineer designing a circuit using either a crystal or oscillator will generally know what overall stability figure their equipment must meet over a particular time period. As the tolerance and/or stability of a device decreases then the more important ageing becomes. For example using a TCXO at ±1ppm stability over temperature will require ageing to be kept to relatively small values. However, if the total frequency movement allowance of a design is for example ±200ppm and a device with a rating of ±100ppm is used then a small amount of ageing can effectively be ignored.